考试时间为180分钟,数学三对比解析

2019年数学一考试大纲

点击查看:数学二对比解析
数学三对比解析
数学四对比解析

2013年与2012年考研数学(一)大纲变化对比及复习重点提示

考试科目:高等数学、线性代数、概率论与数理统计

数学一

科目

一、试卷满分及考试时间

章节

章节

试卷满分为150分,考试时间为180分钟。

2007年大纲内容

大纲内容

答题方式为闭卷、笔试。

2008年大纲内容

2012考研数学(一)大纲

概率论与数理统计 约22%

对比分析

2013考研数学(一)大纲

单选题 8小题,每小题4分,共32分

高等数学

大纲对比

填空题 6小题,每小题4分,共24分

第一章:函数、极限、连续

复习重点提示

解答题 9小题,共94分

考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
图片 1

高等数学

函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求:
1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
  5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

一、函数、极限、连续

数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:

考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
图片 1

考试内容

函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
  5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

1。理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

对比:无变化

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

2。了解函数的有界性、单调性、周期性和奇偶性。

第二章:一元函数微分学

无变化

3。理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

考试内容:导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算
基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数
一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别
函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径
考试要求
1.
理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.
8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率和曲率半径的概念,会计算曲率和曲率半径.

1.函数是微积分研究的对象,函数这部分的重点是:复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数的概念等;2.极限是研究微积分的工具,极限是本章的重点内容,既要准确理解极限的概念、性质和极限存在的条件,又要能准确的求出各种极限,掌握求极限的各种方法。3.连续性是可导性与可积性的重要条件,要掌握判断函数连续性与间断点类型的方法,特别是分段函数在分界点处的连续性,理解闭区间上连续函数的性质。

4。掌握基本初等函数的性质及其图形,了解初等函数的概念。

考试内容:导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算
基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数
一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别
函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率圆
曲率半径
考试要求
1.
理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.
8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当时,f(x)的图形是凹的;当f“(x)<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.

考试要求

5。理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。

对比:1:多了一个对曲率圆概念了解
2:强调了图形凹凸的官方说明
分析:1:部分考生只是背诵曲率半径公式,
曲率中心的公式,但由这两个“元素”确定的“曲率圆”本身没有深刻认识。
2:经济学和数学中,对于凹凸的定义确实是相反的。不同作者的定义可能说法不一致时造成混乱。其实凹凸在描述上是有方向的,高等数上是讲向上凹或向上凸的,而我们的知觉就是凸嘛当然是向上罗。
建议:1:对曲率圆的由来,曲率半径,曲率中心要有形象的认识及理论的推导能力,而不是简单背两个公式。
2:
不论来自何种专业背景的学生,按官方定义找一个自己能记住,不会混的方法即可。

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
  2.了解函数的有界性、单调性、周期性和奇偶性.
  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
  6.掌握极限的性质及四则运算法则.
  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

6。掌握极限的性质及四则运算法则。

第三章:一元函数积分学

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
  2.了解函数的有界性、单调性、周期性和奇偶性.
  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
  6.掌握极限的性质及四则运算法则.
  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

7。掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 用定积分表达和计算质心 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义反常(广义)积分 定积分的应用
考试要求
1.理解原函数概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式及简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解广义反常积分的概念,会计算广义反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等)及函数的平均值等.

无变化

8。理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 用定积分表达和计算质心 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义反常(广义)积分 定积分的应用
考试要求
1.理解原函数概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式及简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解广义反常积分的概念,会计算广义反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值等.

二、一元函数微分学

9。理解函数连续性的概念,会判别函数间断点的类型。

对比:对定积分应用中多一个“形心”表述与计算的要求
分析:1、重心:物体的重力的合力作用点称为物体的重心。(与组成该物体的物质有关)2、形心:物体的几何中心。(只与物体的几何形状和尺寸有关,与组成该物体的物质无关)3、一般情况下重心和形心是不重合的,只有物体是由同一种均质材料构成时,重心和形心才重合。4、当截面具有两个对称轴时,二者的交点就是该截面的形心。据此,可以很方便的确定圆形、圆环形、正方形的形心;
5、只有一个对称轴的截面,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。6、对于一些常见的简单图形,如圆形、矩形、三角形、正方形等,其形心都是熟知的,利用这些简单图形的形心,由叠加法即可确定由这些简单图形组成的组合图形的
形心。
建议:注意形心与质心的区别,理解几何量与物理量的积分表达式

考试内容

10。了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质,并会应用这些性质。

第四章:向量代数和空间解析几何

导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算
基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数
一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别
函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径

导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算
基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数
一阶微分形式的不变性微分中值定理洛必达法则函数单调性的判别
函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径

考试内容:
  向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程
考试要求:
1.理解空间直角坐标系,理解向量的概念及其表示.
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4.掌握平面方程和直线方程及其求法.
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
6.会求点到直线以及点到平面的距离.
7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程.
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.

导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算
基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数
一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别
函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径

1。理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

考试内容:
  向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 柱面 旋转曲面 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程
考试要求:
1.理解空间直角坐标系,理解向量的概念及其表示.
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4.掌握平面方程和直线方程及其求法.
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
6.会求点到直线以及点到平面的距离.
7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面方程.
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.

无变化

2。掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

对比:考试内容:07年的“母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程”变成“柱面 旋转曲面
考试要求:第8条中由07年的“会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程.”变成“会求简单的柱面和旋转曲面方程.”
分析:

1.一元函数的导数与微分的概念及其各种计算方法是微积分学中最基本又是最重要的概念与计算之一,重点理解函数的可导性与连续性之间的关系.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
2.微分中值定理是微分学中最重要的理论部分,重点掌握罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,会用导数来讨论函数的单调性、极值点、凹凸性与拐点,掌握求最值的方法并会解简单的应用题。

3。了解高阶导数的概念,会求简单函数的高阶导数。

建议:

考试要求

4。会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

第五章:多元函数微分学

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当
时, 的图形是凹的;当 时,
的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.

5。理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理。

考试内容:
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念
有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件
多元复合函数、隐函数的求导法
二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用
考试要求:
1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4.理解方向导数与梯度的概念,并掌握其计算方法.
5.掌握多元复合函数一阶、二阶偏导数的求法.
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当
时, 的图形是凹的;当 时,
的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.

6。掌握用洛必达法则求未定式极限的方法。

考试内容:
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念
有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件
多元复合函数、隐函数的求导法
二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用
考试要求:
1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4.理解方向导数与梯度的概念,并掌握其计算方法.
5.掌握多元复合函数一阶、二阶偏导数的求法.
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.

无变化

7。理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

对比:无变化

三、一元函数积分学

8。会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当
时, 的图形是凹的;当 时,
的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

第六章:多元函数积分学

考试内容

9。了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。

考试内容:
  二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算
两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算
曲线积分和曲面积分的应用
考试要求:
1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
4.掌握计算两类曲线积分的方法.
5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求二元函数全微分的原函数.
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
7.了解散度与旋度的概念,并会计算.
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等).

原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用

原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常积分定积分的应用

考试内容:
  二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算
两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算
曲线积分和曲面积分的应用
考试要求:
1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
4.掌握计算两类曲线积分的方法.
5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求二元函数全微分的原函数.
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
7.了解散度与旋度的概念,并会计算.
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等).

原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用

1。理解原函数的概念,理解不定积分和定积分的概念。

对比:无变化

无变化

2。掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。

第七章:无穷级数

不定积分与定积分是积分学的基础,在积分的计算中换元积分和分部积分法是最基本的方法,需要熟练掌握,理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.掌握用定积分表达和计算一些几何量与物理量

3。会求有理函数、三角函数有理式和简单无理函数的积分。

考试内容
常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质
简单幂级数的和函数的求法 初等函数的幂级数展开式
函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数
考试要求:
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
2.掌握几何级数与p级数的收敛与发散的条件.
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
4.掌握交错级数的莱布尼茨判别法.

考试要求

4。理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。

  1. 了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与收敛的关系.
    6.了解函数项级数的收敛域及和函数的概念.
    7.理解幂级数的收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
    8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
    9.了解函数展开为泰勒级数的充分必要条件.
    10.掌握、、、和的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.
    11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式.

1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.

5。了解反常积分的概念,会计算反常积分。

考试内容
常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质
简单幂级数的和函数的求法 初等函数的幂级数展开式
函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在[-l,l]上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数
考试要求
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
2.掌握几何级数与p级数的收敛与发散的条件.
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
4.掌握交错级数的莱布尼茨判别法.

1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.

6。掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。

  1. 了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与收敛的关系.
    6.了解函数项级数的收敛域及和函数的概念.
    7.理解幂级数的收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
    8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
    9.了解函数展开为泰勒级数的充分必要条件.
    10.掌握、、、和的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.
    11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式.

无变化

四、向量代数和空间解析几何

对比:无变动

四、向量代数和空间解析几何

向量的概念向量的线性运算向量的数量积和向量积
向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程
直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程

第八章:常微分方程

考试内容

1。理解空间直角坐标系,理解向量的概念及其表示。

考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程
欧拉(Euler)方程 微分方程简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.(调整前知识点:了解微分方程及其解、阶、通解、初始条件和特解等概念.)
2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程
4.会用降阶法解下列方程:,和.
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.
8.会解欧拉方程.
9.会用微分方程解决一些简单的应用问题.

向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 柱面 旋转曲面 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程

2。掌握向量的运算,了解两个向量垂直、平行的条件。

考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程
欧拉(Euler)方程 微分方程简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.(调整前知识点:了解微分方程及其解、阶、通解、初始条件和特解等概念.)
2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程
4.会用降阶法解下列方程:,和.
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.
8.会解欧拉方程.
9.会用微分方程解决一些简单的应用问题.

向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 柱面 旋转曲面 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程

3。理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。

对比:无变动

无变化

4。掌握平面方程和直线方程及其求法。

线性代数

1.向量代数的重点是向量的运算:加法、数乘、数量积、向量积与混合积,应能熟练的用于直线与平面的问题;2.空间解析几何的重点是建立平面、直线方程,以及直线与直线、平面与平面、直线与平面之间的各种关系;3.对于二次方程应当知道每种方程各表示什么曲面,会求柱面、旋转面方程。

5。会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系解决有关问题。

第一章:行列式

考试要求

6。会求点到直线以及点到平面的距离。

考试内容:
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求:
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

1.理解空间直角坐标系,理解向量的概念及其表示.
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4.掌握平面方程和直线方程及其求法.
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.

7。了解曲面方程和空间曲线方程的概念。

考试内容:
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求:
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

1.理解空间直角坐标系,理解向量的概念及其表示.
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.
4.掌握平面方程和直线方程及其求法.
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.

8。了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程。

对比:没变化

无变化

9。了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。

第二章:矩阵

五、多元函数微分学

多元函数的概念二元函数的几何意义二元函数的极限与连续的概念
有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件

考试内容:
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵  矩阵的秩 矩阵等价 分块矩阵及其运算
考试要求:
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
  4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.

考试内容

多元复合函数、隐函数的求导法
二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用

考试内容:
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵  矩阵的秩 矩阵等价 分块矩阵及其运算
考试要求:
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
  4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.

多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念
有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件
多元复合函数、隐函数的求导法
二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用

1。理解多元函数的概念,理解二元函数的几何意义。

对比:无变化

多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念
有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件
多元复合函数、隐函数的求导法
二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用

2。了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。

第三章:向量

无变化

3。理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。

考试内容:
  向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关
向量组的极大线性无关组 等价向量组 向量组的秩
向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念
n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积
线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质
考试要求:
  1.理解n维向量、向量的线性组合与线性表示的概念.
  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
  3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系
  5.了解n维向星空间、子空间、基底、维数、坐标等概念.
  6.了解基变换和坐标变换公式,会求过渡矩阵.
  7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.

1.多元函数重点研究的是二元函数,重点掌握二元函数的偏导数、可微性、全微分,了解全微分存在的必要条件及充分条件,会求多元复合函数及隐函数的一阶与二阶偏导数或全微分;2.多元函数微分学的一个重要应用时多元函数的最值问题,包括简单的极值问题与条件极值问;3.多元函数微分学另外一个重要的概念是方向导数和梯度,掌握其计算方法。

4。理解方向导数与梯度的概念,并掌握其计算方法。

考试内容:
  向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关
向量组的极大线性无关组 等价向量组 向量组的秩
向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念
n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积
线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质
考试要求:
  1.理解n维向量、向量的线性组合与线性表示的概念.
  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
  3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系
  5.了解n维向星空间、子空间、基底、维数、坐标等概念.
  6.了解基变换和坐标变换公式,会求过渡矩阵.
  7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.

考试要求

5。掌握多元复合函数一阶、二阶偏导数的求法。

对比:无变化

1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4.理解方向导数与梯度的概念,并掌握其计算方法.
5.掌握多元复合函数一阶、二阶偏导数的求法.
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.

6。了解隐函数存在定理,会求多元隐函数的偏导数。

第四章:线性方程组

1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4.理解方向导数与梯度的概念,并掌握其计算方法.
5.掌握多元复合函数一阶、二阶偏导数的求法.
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.

7。了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。

考试内容:
线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件
非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构
齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解
考试要求
l.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.

无变化

8。了解二元函数的二阶泰勒公式。

考试内容:
线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件
非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构
齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解
考试要求
l.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.

六、多元函数积分学

9。理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。

对比:变无化

考试内容

二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算
两类曲面积分的关系高斯公式散度、旋度的概念及计算
曲线积分和曲面积分的应用

第五章:矩阵的特征值及特征向量

二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算
两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算
曲线积分和曲面积分的应用

1。理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。

考试内容:
  矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质
矩阵可相似对角化的充分必要条件及相似对角矩阵
实对称矩阵的特征值、特征向量及相似对角矩阵
考试要求:
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.

二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算
两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算
曲线积分和曲面积分的应用

2。掌握二重积分的计算方法,会计算三重积分。

考试内容:
  矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质
矩阵可相似对角化的充分必要条件及相似对角矩阵
实对称矩阵的特征值、特征向量及相似对角矩阵
考试要求:
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.

无变化

3。理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

对比:无变化

多元函数积分学是定积分的推广,包括二重积分、三重积分、曲线曲面积分,学习本章的关键就是掌握它们与定积分的关系,以及它们之间的相互关系,重点掌握把计算各类多元函数积分转化为求定积分的有关公式及重积分的变量替换,包括极坐标、柱坐标与球坐标变换。格林公式、高斯公式和斯托克斯公式及其应用,平面曲线积分与路径无关及全微分式的原函数问题等再历年的考试中占有重要地位。

4。掌握计算两类曲线积分的方法。

第六章:二次型

考试要求

5。掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数。

考试内容:
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理
二次型的标准形和规范形 用正交变换和配方法化二次型为标准形
二次型及其矩阵的正定性
考试要求:
1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念
了解二次型的标准形、规范形的概念以及惯性定理.
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法

1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
4.掌握计算两类曲线积分的方法.
5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
7.了解散度与旋度的概念,并会计算.
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).

6。了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分。

考试内容:
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理
二次型的标准形和规范形 用正交变换和配方法化二次型为标准形
二次型及其矩阵的正定性
考试要求:
1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念
了解二次型的标准形、规范形的概念以及惯性定理.
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法

1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
4.掌握计算两类曲线积分的方法.
5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.
7.了解散度与旋度的概念,并会计算.
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).

7。了解散度与旋度的概念,并会计算。

对比:无变化

无变化

8。会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)。

第一章:随机事件和概率

七、无穷级数

常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与
级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质
简单幂级数的和函数的求法初等函数的幂级数展开式
函数的傅里叶系数与傅里叶级数狄利克雷定理函数在 上的傅里叶级数函数在
上的正弦级数和余弦级数

考试内容
  随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念
概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式
事件的独立性 独立重复试验 考试要求
  1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.
  2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

考试内容

1。理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。

考试内容
  随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念
概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式
事件的独立性 独立重复试验 考试要求
  1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.
  2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与
级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质
简单幂级数的和函数的求法 初等函数的幂级数展开式
函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在
上的傅里叶级数 函数在 上的正弦级数和余弦级数

2。掌握几何级数与 级数的收敛与发散的条件。

对比:无变化

常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与
级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质
简单幂级数的和函数的求法 初等函数的幂级数展开式
函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在
上的傅里叶级数 函数在 上的正弦级数和余弦级数

3。掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。

第二章:随机变量及其分布

无变化

4。掌握交错级数的莱布尼茨判别法。

考试内容
  随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布
连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念.理解分布函数图片 3
的概念及性质.会计算与随机变量相联系的事件的概率.
  2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.
  3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
  4.理解连续型随机变量及其概率密度的概念,掌握均匀分布图片 4、正态分布图片 5、指数分布图片 6
及其应用,其中参数为λ(λ>0)的指数分布的概率密度为图片 7

无穷级数包含常数项级数与函数项级数,要熟练掌握常数项级数敛散性的判定,对一般的函数项级数要掌握其收敛域的求法,对幂级数要掌握其收敛性的特点,收敛半径与收敛域的求法,和函数的性质,关于傅里叶级数,考察的比较少,对于给定的函数要会求按指定形式的傅里叶展开式。

5。了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。

5.会求随机变量函数的分布.

考试要求

6。了解函数项级数的收敛域及和函数的概念。

考试内容
  随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布
连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念.理解分布函数图片 8
的概念及性质.会计算与随机变量相联系的事件的概率.
  2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布图片 9、几何分布、超几何分布、泊松(Poisson)分布图片 10及其应用.
  3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
  4.理解连续型随机变量及其概率密度的概念,掌握均匀分布图片 11、正态分布图片 12、指数分布图片 13
及其应用,其中参数为λ(λ>0)的指数分布的概率密度为图片 7

1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
  2.掌握几何级数与 级数的收敛与发散的条件.
  3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
  4.掌握交错级数的莱布尼茨判别法.   5.
了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.
  6.了解函数项级数的收敛域及和函数的概念.
  7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
  8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
  9.了解函数展开为泰勒级数的充分必要条件.   10.掌握 、 、 、 及
的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.
11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在
上的函数展开为傅里叶级数,会将定义在
上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.

7。理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。

5.会求随机变量函数的分布.

1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
  2.掌握几何级数与 级数的收敛与发散的条件.
  3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
  4.掌握交错级数的莱布尼茨判别法.   5.
了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.
  6.了解函数项级数的收敛域及和函数的概念.
  7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
  8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
  9.了解函数展开为泰勒级数的充分必要条件.   10.掌握 、 、 、 及
的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.
11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在
上的函数展开为傅里叶级数,会将定义在
上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.

8。了解幂级数在其收敛区间内的基本性质,会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。

对比:增加了二项分布、泊松分布、均匀分布、指数分布的符号表示

无变化

9。了解函数展开为泰勒级数的充分必要条件。

分析:注意分布的符号表示,看到符号能知道是哪种分布

八、常微分方程

10。掌握 , , , 及
的麦克劳林展开式,会用它们将一些简单函数间接展开为幂级数。

建议:同学们复习时一定注意熟悉这几种分布的符号

考试内容

11。了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在
上的函数展开为傅里叶级数,会将定义在
上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式。

第三章:多维随机变量及其分布

常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程
欧拉(Euler)方程 微分方程的简单应用

常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程
欧拉方程微分方程的简单应用

考试内容
  多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续性随机变量的概率密度、边缘概率密度和条件密度
随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
考试要求
  1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质.
理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.
  2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.
  3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.
  4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.

常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程
欧拉(Euler)方程 微分方程的简单应用

1。了解微分方程及其阶、解、通解、初始条件和特解等概念。

考试内容
  多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续性随机变量的概率密度、边缘概率密度和条件密度
随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
考试要求
  1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质.
理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.
  2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.
3.掌握二维均匀分布,了解二维正态分布
的概率密度,理解其中参数的概率意义.
  4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.

无变化

2。掌握变量可分离的微分方程及一阶线性微分方程的解法。

对比:增加了二维正态分布的符号表示

常微分方程研究的对象就是常微分方程解的性质与求法,需要重点掌握如何求解不同类型的微分方程,主要包括一阶线性微分方程和二阶常系数线性微分方程,理解线性微分方程解的性质和解的结构,对于微分方程的应用问题要会建立方程。

3。会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。

分析:今年明确增添了二维正态分布的符号表示,说明了符号表示在数学中比较重要,需要大家掌握

考试要求

4。会用降阶法解下列形式的微分方程: 和 。

建议:在符号和所代表的知识信息之间能熟练的一一对应

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程
4.会用降阶法解下列形式的微分方程: .
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
8.会解欧拉方程. 9.会用微分方程解决一些简单的应用问题.

5。理解线性微分方程解的性质及解的结构。

    更多信息请访问:新浪考研频道
考研论坛
考研博客圈

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程
4.会用降阶法解下列形式的微分方程: .
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
8.会解欧拉方程. 9.会用微分方程解决一些简单的应用问题.

6。掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

  特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

无变化

7。会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。

线性代数

9。会用微分方程解决一些简单的应用问题。

一、行列式

行列式的概念和基本性质行列式按行展开定理

考试内容

1。了解行列式的概念,掌握行列式的性质。

行列式的概念和基本性质 行列式按行(列)展开定理

2。会应用行列式的性质和行列式按行展开定理计算行列式。

行列式的概念和基本性质 行列式按行(列)展开定理


矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算

无变化

1。理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。

行列式的重点是计算,应当理解n阶行列式的概念、掌握行列式的性质

2。掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。

考试要求

3。理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。

1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

4。理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。

1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

5。了解分块矩阵及其运算。

无变化

向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关
向量组的极大线性无关组 等价向量组 向量组的秩
向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念
维向量空间的基变换和坐标变换 过渡矩阵 向量的内积
线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质

二、矩阵

1。理解 维向量、向量的线性组合与线性表示的概念。

考试内容

2。理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法。

矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵  矩阵的秩 矩阵的等价 分块矩阵及其运算

3。理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。

矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵  矩阵的秩 矩阵的等价 分块矩阵及其运算

4。理解向量组等价的概念,理解矩阵的秩与其行向量组的秩之间的关系。

无变化

5。了解 维向量空间、子空间、基底、维数、坐标等概念。

矩阵是线性代数的核心,矩阵的概念、运算及理论贯穿线性代数的始终,要熟练掌握矩阵的运算、理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.

6。了解基变换和坐标变换公式,会求过渡矩阵。

考试要求

7。了解内积的概念,掌握线性无关向量组正交规范化的施密特方法。

1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
  4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.

8。了解规范正交基、正交矩阵的概念以及它们的性质。

1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
  4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.

线性方程组的克拉默法则 齐次线性方程组有非零解的充分必要条件
非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构
齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解

无变化

2。理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。

三、向量

3。理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。

考试内容

4。理解非齐次线性方程组解的结构及通解的概念。

向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关
向量组的极大线性无关组 等价向量组 向量组的秩
向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念
维向量空间的基变换和坐标变换 过渡矩阵 向量的内积
线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质

5。掌握用初等行变换求解线性方程组的方法。

向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关
向量组的极大线性无关组 等价向量组 向量组的秩
向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念
维向量空间的基变换和坐标变换 过渡矩阵 向量的内积
线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质

五、矩阵的特征值和特征向量

无变化

矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质
矩阵可相似对角化的充分必要条件及相似对角矩阵
实对称矩阵的特征值、特征向量及其相似对角矩阵

向量是线性代数的重点之一,也是难点,应理解向量的线性组合,掌握求线性表出的方法,理解线性相关无关的概念,重点掌握向量组线性相关、线性无关的有关性质及判别法.要理解向量组的极大线性无关组的概念,掌握其求法,要理解向量组秩的概念,会求向量组的秩,了解内积的概念掌握施密特正交化方法。

1。理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。

考试要求

2。理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。

1.理解 维向量、向量的线性组合与线性表示的概念.
  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
  3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
  5.了解 维向量空间、子空间、基底、维数、坐标等概念.
  6.了解基变换和坐标变换公式,会求过渡矩阵.
  7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.

3。掌握实对称矩阵的特征值和特征向量的性质。

1.理解 维向量、向量的线性组合与线性表示的概念.
  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
  3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
  5.了解 维向量空间、子空间、基底、维数、坐标等概念.
  6.了解基变换和坐标变换公式,会求过渡矩阵.
  7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.

二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理
二次型的标准形和规范形 用正交变换和配方法化二次型为标准形
二次型及其矩阵的正定性

无变化

1。掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理。

四、线性方程组

2。掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形。

考试内容

3。理解正定二次型、正定矩阵的概念,并掌握其判别法。

线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件
非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构
齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解

随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质
古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验

线性方程组的克拉默(Cramer)法则 齐次线性方程组有非零解的充分必要条件
非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构
齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解

1。了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算。

“克莱姆”改为“克拉默”

2。理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯公式。

线性方程组是线性代数的基础内容之一,也是考察的重点内容,要理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.会求基础解系、通解,理解非齐次线性方程组解的结构及通解的概念.

3。理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。

考试要求

随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布
连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布

l.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.

1。理解随机变量的概念,理解分布函数
的概念及性质,会计算与随机变量相联系的事件的概率。

l.会用克拉默法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.

2。理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布
、几何分布、超几何分布、泊松分布 及其应用。

“克莱姆”改为“克拉默”

3。了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

五、矩阵的特征值和特征向量

4。理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布
、指数分布及其应用,其中参数为 的指数分布 的概率密度为

考试内容

5。会求随机变量函数的分布。

矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质
矩阵可相似对角化的充分必要条件及相似对角矩阵
实对称矩阵的特征值、特征向量及其相似对角矩阵

三、多维随机变量及其分布

矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质
矩阵可相似对角化的充分必要条件及相似对角矩阵
实对称矩阵的特征值、特征向量及其相似对角矩阵

多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度
随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布

无变化

1。理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率。

矩阵的特征值、特征向量的计算以及矩阵的对角化是重点。对于抽象矩阵,要会用定义求解;对于具体矩阵,一般通过特征方程
求特征值,再利用
求特征向量。相似对角化要掌握对角化的条件,注意一般矩阵与实对称矩阵在对角化方面的联系与区别。

2。理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件。

考试要求

3。掌握二维均匀分布,了解二维正态分布
的概率密度,理解其中参数的概率意义。

1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.

4。会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布。

1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.

四、随机变量的数字特征

无变化

随机变量的数学期望、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质

六、二次型

1。理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征。

考试内容

2。会求随机变量函数的数学期望。

二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理
二次型的标准形和规范形 用正交变换和配方法化二次型为标准形
二次型及其矩阵的正定性

五、大数定律和中心极限定理

二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理
二次型的标准形和规范形 用正交变换和配方法化二次型为标准形
二次型及其矩阵的正定性

切比雪夫不等式切比雪夫大数定律伯努利大数定律辛钦大数定律棣莫弗-拉普拉斯定理
列维-林德伯格定理

无变化

1。了解切比雪夫不等式。

这部分需要重要掌握两点:一是用正交变换和配方法化二次型为标准形,重点是正交变换法。需要注意的是对于有多重特征值时,解方程组所得的对应的特征向量可能不一定正交,这时要正交规范化。二是二次型的正定性,掌握判定正定性的方法。

2。了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律。

考试要求

3。了解棣莫弗-拉普拉斯定理和列维-林德伯格定理。

1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

六、数理统计的基本概念

1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布
分位数 正态总体的常用抽样分布

无变化

1。理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为

概率论与数理统计

2。了解 分布、 分布和 分布的概念及性质,了解上侧
分位数的概念并会查表计算。

一、随机事件和概率

3。了解正态总体的常用抽样分布。

考试内容

点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准
区间估计的概念 单个正态总体的均值和方差的区间估计
两个正态总体的均值差和方差比的区间估计

随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质
古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验

1。理解参数的点估计、估计量与估计值的概念。

随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质
古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验

2。掌握矩估计法和最大似然估计法。

无变化

3。了解估计量的无偏性、有效性的概念,并会验证估计量的无偏性。

随机事件与概率是概率论的两个最基本的概念,本章的重点是概率的计算,需要掌握事件的关系及运算.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式,它们是计算概率的基本方法;事件的独立性是一个重要的概念,需要理解概念并掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间。

考试要求

显着性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.
3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

1。理解显着性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.
3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

2。掌握单个及两个正态总体的均值和方差的假设检验。

无变化

二、随机变量及其分布

考试内容

随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布
连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布

随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布
连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布

无变化

随机变量是概率论研究的基本对象,离散型和连续型随机变量是最重要的两类随机变量,掌握0-1分布、二项分布
、几何分布、超几何分布、泊松(Poisson)分布 、均匀分布 、正态分布
、指数分布及其应用,会求随机变量函数的分布.

考试要求

1.理解随机变量的概念,理解分布函数
的概念及性质,会计算与随机变量相联系的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布
、几何分布、超几何分布、泊松(Poisson)分布 及其应用.
3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布
、指数分布及其应用,其中参数为 的指数分布 的概率密度为
5.会求随机变量函数的分布.

1.理解随机变量的概念,理解分布函数
的概念及性质,会计算与随机变量相联系的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布
、几何分布、超几何分布、泊松(Poisson)分布 及其应用.
3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布
、指数分布及其应用,其中参数为 的指数分布 的概率密度为
5.会求随机变量函数的分布.

无变化

三、多维随机变量及其分布

考试内容

多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度
随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布

多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度
随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布

无变化

在多维随机变量中,二维随机变量是基础,不仅应理解二维随机变量联合分布函数的概念与性质,还要理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.另外,随机变量的相互独立行是概率论中的重要概念,理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.
并会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布,重点是两个连续型随机变量函数的分布函数与概率密度的计算。

考试要求

1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.
  2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.
  3.掌握二维均匀分布,了解二维正态分布
的概率密度,理解其中参数的概率意义.
4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.

1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.
  2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.
  3.掌握二维均匀分布,了解二维正态分布
的概率密度,理解其中参数的概率意义.
4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.

无变化

四、随机变量的数字特征

考试内容

随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质

随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质

无变化

关于随机变量的数字特征不仅要理解概念,还应会运用定义域性质计算随机变量及其函数的数字特征

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征
2.会求随机变量函数的数学期望.

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征
2.会求随机变量函数的数学期望.

无变化

五、大数定律和中心极限定理

考试内容

切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De
Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理

切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De
Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理

无变化

本章内容考察的比较少,只需要了解一个不等式,两个定理,三个定律。注意切比雪夫大数定律、伯努利大数定律和辛钦大数定律这三大定律成立的条件,会用相关定理近似计算有关随机事件的概率。

考试要求

1.了解切比雪夫不等式.
  2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)
.
3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
.

1.了解切比雪夫不等式.
  2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)
.
3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
.

无变化

六、数理统计的基本概念

考试内容

总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布
分位数 正态总体的常用抽样分布

总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布
分位数 正态总体的常用抽样分布

无变化

在数理统计的基本概念中,主要有总体、个体 、简单随机样本、统计量、
样本均值、样本方差和样本矩。 分布 分布 分布

考试要求

1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:
2.了解 分布、 分布和 分布的概念及性质,了解上侧
分位数的概念并会查表计算. 3.了解正态总体的常用抽样分布.

1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:
2.了解 分布、 分布和 分布的概念及性质,了解上侧
分位数的概念并会查表计算. 3.了解正态总体的常用抽样分布.

无变化

七、参数估计

考试内容

点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准
区间估计的概念 单个正态总体的均值和方差的区间估计
两个正态总体的均值差和方差比的区间估计

点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准
区间估计的概念 单个正态总体的均值和方差的区间估计
两个正态总体的均值差和方差比的区间估计

无变化

本章的重点是求估计量的两个方法:矩估计法(一阶矩、二阶矩)与最大似然估计法

考试要求

1.理解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.
4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.

1.理解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.
4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.

无变化

八、假设检验

考试内容

显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验

显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验

无变化

重点是掌握单个及两个正态总体的均值和方差的假设检验.

考试要求

1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.
2.掌握单个及两个正态总体的均值和方差的假设检验.

1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.
2.掌握单个及两个正态总体的均值和方差的假设检验.

无变化

分享到:

;);););););)

微博推荐

    更多信息请访问:新浪考研频道
考研论坛

  特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

相关文章