全国网上十大正规赌博激光驱动光子对撞机产生正负电子对的方案设计,10拍瓦激光技术切磋所获得的发散角约为3度

中国十大赌博城市排名,全国网上十大正规赌博,光子(能量)在特定条件下可以转化成物质,这对研究物质的起因有重要的意义。相关的理论研究始于上世纪30年代,直到1997年,美国SLAC国家加速器实验室首次在实验上观测到多光子碰撞产生正负电子对的过程。然而,对于两个高能光子的相互作用产生正负电子对的过程,也就是常说的光子对撞机,受制于已有伽马射线源的流强和亮度不够高,迄今为止还未被在实验中观测到。

全国网上十大正规赌博 1

日前,北京大学物理学院颜学庆教授和卢海洋研究员领导的课题组提出了激光驱动光子对撞机的新方案,该方案每脉冲可以产生3亿个Breit-Wheeler事件,并且所产生的正负电子对发散角只有7度,具有非常好的准直性。同时,背景噪声可以得到有效抑制,信噪比高达1000:1。研究成果以“Creation
of electron-positron pairs in photon-photon collisions driven by 10-PW
laser pulses”为题在线发表在《物理评论快报》(Physical Review
Letters
)。

澳门十大网上博网址,谁有可靠的网赌网站,近年来,随着激光技术的发展,特别是10拍瓦(1拍瓦 =
1×1015瓦)激光器的建成,激光光强得到极大地提高,预测可以达到1×1023
W/cm3以上。当如此高强度的激光与物质相互作用时,大部分激光能量将被物质吸收并转化成伽马射线,若能同时有效控制伽马射线的发散角,伽马射线源将会达到前所未有的流强和亮度。

澳门正规网上大赌场,澳门十大正规网络赌博,随着啁啾脉冲放大技术的发展,特别是10-100拍瓦激光器的建成,激光光强可以达到1023W/cm2以上。超强激光与物质相互作用是一种极端非线性过程,不仅可以用于电子、质子和重离子的加速,也可以产生从太赫兹到X/γ射线的超短超强宽带相干辐射。正是由于CPA激光在粒子加速和辐射领域的重要潜力和贡献,Mourou
and Strickland获了2018年度诺贝尔物理奖。

全国网上十大正规赌博 2

正规线上手机赌钱平台,十大网络赌博赚钱平台,在“大科学装置前沿研究”重点专项等的支持下,北京大学物理学院颜学庆、卢海洋研究团队针对实验上双光子相互作用产生正负电子对这一世界性科学难题,开展了系统深入的研究。前期工作中,他们研究了如何产生超高亮度伽马辐射源,提出了10拍瓦量级激光驱动光子对撞机的设计方案,从理论方面深入阐明了微通道结构靶中电子的加速过程由纵向电场主导,电子的横向加速得到有效抑制,因此利于获得高准直性的电子束,当这些电子束在横向电场中的相位发生反转时,电子就会在管道边界处产生强的伽马辐射。电子的发散角决定着伽马辐射的发散角,数值模拟显示,10拍瓦激光所获得的发散角约为3度,具有非常好的准直性,所获伽马射线源的亮度比之前研究报道结果高出两个数量级。基于该超高亮度的伽马射线源,研究人员将其应用于光子对撞机。理论模拟表明,该方案每一次对撞可以产生3亿多个正负电子对,同时背景噪声得到有效抑制,信噪比高于1000:1,且每一次对撞的正负电子对信号(>1×108)远高于现有测量技术的探测极限。该设计方案可以在实验室中验证光子相互作用过程中能量到物质的转换过程,为研究激光驱动光子对撞机提供了新途径,也有望为未来建设基于重频拍瓦飞秒激光的高亮度伽马源及其应用装置提供依据。

网上十大正规赌网址大全,光子在特定条件下可以转化成物质,这对研究物质的起因有重要的意义。相关的理论研究始于上世纪30年代,直到1997年,美国SLAC国家加速器实验室首次在实验上观测到多光子碰撞产生正负电子对的过程。然而,对于两个高能光子的相互作用产生正负电子对的过程,也就是常说的光子对撞机,受制于已有伽马射线源的流强和亮度不够高,迄今为止还未被在实验中观测到。

激光驱动光子对撞机产生正负电子对的方案设计

近年来,随着激光技术的发展,特别是10拍瓦激光器的建成,激光光强得到极大地提高,预测可以达到1×1023
W/cm3以上。当如此高强度的激光与物质相互作用时,大部分激光能量将被物质吸收并转化成伽马射线,若能同时有效控制伽马射线的发散角,伽马射线源将会达到前所未有的流强和亮度。

根据爱因斯坦质能方程和量子电动力学理论,在一定条件下光子(能量)可以转化成物质,这对研究物质的起因有重要的作用。相关的理论研究始于上世纪30年代,直到1997年,美国SLAC实验室才首次在实验中观测到多光子碰撞产生正负电子对的过程。然而,对于两个高能光子的互作用过程,也就是常说的光子对撞机,到目前为止还未能在实验中观测到。在光子对撞机中,光子的互作用的次数与光子数目和光子互作用截面成正比,与光子束的脉冲宽度、两束光子束的交叠面积成反比。在过去实验中不能观测到光子的互作用过程是因为已有伽马射线源的流强和亮度还达不到要求。

在“大科学装置前沿研究”重点专项等的支持下,北京大学物理学院颜学庆、卢海洋研究团队针对实验上双光子相互作用产生正负电子对这一世界性科学难题,开展了系统深入的研究。前期工作中,他们研究了如何产生超高亮度伽马辐射源,提出了10拍瓦量级激光驱动光子对撞机的设计方案,从理论方面深入阐明了微通道结构靶中电子的加速过程由纵向电场主导,电子的横向加速得到有效抑制,因此利于获得高准直性的电子束,当这些电子束在横向电场中的相位发生反转时,电子就会在管道边界处产生强的伽马辐射。

近年来,随着激光技术的发展,特别是10拍瓦(1拍瓦=1e15瓦)激光器的建成,激光光强将可以达到1e23W/cm2以上。当如此高强度的激光与物质相互作用时,大部分激光能量被吸收并转化成伽马射线辐射源,如果可以有效控制伽马射线的发散角,辐射的伽马射线将会达到前所未有的流强和亮度。

电子的发散角决定着伽马辐射的发散角,数值模拟显示,10拍瓦激光所获得的发散角约为3度,具有非常好的准直性,所获伽马射线源的亮度比之前研究报道结果高出两个数量级。基于该超高亮度的伽马射线源,研究人员将其应用于光子对撞机。理论模拟表明,该方案每一次对撞可以产生3亿多个正负电子对,同时背景噪声得到有效抑制,信噪比高于1000:1,且每一次对撞的正负电子对信号远高于现有测量技术的探测极限。

团队研究人员在前期的工作中对产生超高亮度伽马光源进行了深入的研究,首次从理论上系统阐明了微通道结构靶中,纵向电场主导了电子的加速过程,同时电子的横向加速可以得到有效的抑制,因此可以获得高准直性的电子束,当这些电子束在横向场中的相位发生反转时,电子就会在管道边界处产生强伽马辐射。由于电子的发散角决定了伽马辐射的发散角,因此可以获得准直性非常好的γ-ray辐射源。数值模拟中10PW激光所能获得的发散角小于3度,亮度比之前研究报道结果高出两个数量级的伽马辐射源。 

该设计方案可以在实验室中验证光子相互作用过程中能量到物质的转换过程,为研究激光驱动光子对撞机提供了新途径,也有望为未来建设基于重频拍瓦飞秒激光的高亮度伽马源及其应用装置提供依据。

全国网上十大正规赌博 3

在国家自然科学基金项目、国家重大科技基础设施培育项目和国家重大仪器专项等支持下,北京大学颜学庆教授团队在激光等离子体加速领域取得重要进展,基于高品质拍瓦激光,实验上首次利用人工设计的微纳靶材,获得了能量高达580兆电子伏特的碳离子,将原飞秒激光加速重离子能量记录提高了两倍;并提出采用微结构管靶获得产额1014/发和发散角小于3度的超高亮度伽马辐射源新方案,亮度比之前研究报道结果高出两个数量级。相关结果以“Creation
of Electron-positron Pairs in Photon-photon Collisions Driven by 10-PW
Laser Pulses”和“Laser Acceleration of Highly Energetic Carbon Ions Using
a Double-Layer Target Composed of Slightly Underdense Plasma and
Ultrathin Foil”为题,于2019年1月9日和10日连续在线发表于Physical Review
Letters上。

本方案可以获得高出之前2—3量级的伽马光源亮度

本工作即基于以上研究成果,将该超高亮度的伽马射线应用于光子对撞机。理论计算结果表明,该方案可以获得超高信噪比(>1000:1),且每一发正负电子对信号(>1e8)远高于现有测量技术的探测极限。因此,通过该方案可以在实验室中验证光子互作用过程中由能量到物质的转换过程,将提供激光驱动光子对撞机研究的新途径,也将极大的促进双光子BW物理的发展。未来有望依据本方案建设基于重频拍瓦飞秒激光的高亮度伽马源及其应用装置。

北京大学物理学院博士后余金清为论文第一作者。颜学庆教授和卢海洋研究员为通讯作者。论文合作者还包括北京大学的陈佳洱院士、马文君研究员,広岛大学的T.Takahashi教授,高能物理所的黄永盛研究员。该研究工作得到国家自然科学基金、科技部重点研发专项、挑战计划和中国博士后科学基金的联合资助。相关模拟工作得到北京大学高性能计算平台的支持。

相关文章链接:

Phys. Rev. Lett. 122, 014802 (2019)

Appl. Phys. Lett. 112, 204103 (2018)

相关文章